Artificial General Intelligence
Artificial basic intelligence (AGI) is a type of artificial intelligence (AI) that matches or exceeds human cognitive capabilities throughout a vast array of cognitive tasks. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably surpasses human cognitive abilities. AGI is considered one of the definitions of strong AI.
Creating AGI is a main objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research and advancement projects across 37 countries. [4]
The timeline for achieving AGI remains a topic of ongoing dispute among scientists and professionals. As of 2023, some argue that it may be possible in years or decades; others preserve it may take a century or longer; a minority think it might never be attained; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has revealed concerns about the rapid progress towards AGI, recommending it could be achieved quicker than lots of anticipate. [7]
There is debate on the specific meaning of AGI and concerning whether modern large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical topic in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have actually stated that reducing the risk of human extinction posed by AGI ought to be a worldwide priority. [14] [15] Others find the development of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic smart action. [21]
Some academic sources book the term "strong AI" for computer system programs that experience sentience or consciousness. [a] On the other hand, weak AI (or narrow AI) is able to solve one specific issue however lacks general cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as human beings. [a]
Related ideas include synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical type of AGI that is far more normally intelligent than humans, [23] while the idea of transformative AI associates with AI having a big effect on society, for example, similar to the agricultural or commercial transformation. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, proficient, expert, virtuoso, and superhuman. For example, a skilled AGI is defined as an AI that surpasses 50% of skilled adults in a wide variety of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified but with a threshold of 100%. They think about large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. One of the leading propositions is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular methods. [b]
Intelligence characteristics
Researchers typically hold that intelligence is needed to do all of the following: [27]
factor, usage method, fix puzzles, and make judgments under unpredictability represent understanding, including sound judgment understanding strategy discover - interact in natural language - if necessary, incorporate these abilities in conclusion of any provided objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) consider extra characteristics such as imagination (the ability to form novel psychological images and principles) [28] and autonomy. [29]
Computer-based systems that exhibit a number of these abilities exist (e.g. see computational imagination, automated reasoning, decision assistance system, robotic, evolutionary calculation, smart agent). There is dispute about whether contemporary AI systems have them to an appropriate degree.
Physical traits
Other capabilities are thought about desirable in intelligent systems, passfun.awardspace.us as they may affect intelligence or help in its expression. These include: [30]
- the capability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. move and manipulate items, change place to explore, and so on).
This consists of the ability to identify and react to risk. [31]
Although the capability to sense (e.g. see, hear, and so on) and the ability to act (e.g. relocation and manipulate items, modification place to check out, and so on) can be desirable for some intelligent systems, [30] these physical abilities are not strictly required for an entity to certify as AGI-particularly under the thesis that large language designs (LLMs) might already be or become AGI. Even from a less positive viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has never ever been proscribed a specific physical embodiment and hence does not demand a capacity for locomotion or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to verify human-level AGI have been considered, consisting of: [33] [34]
The concept of the test is that the device has to attempt and pretend to be a man, by answering questions put to it, and it will just pass if the pretence is reasonably convincing. A substantial portion of a jury, who must not be expert about makers, must be taken in by the pretence. [37]
AI-complete problems
A problem is called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would need to implement AGI, because the solution is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of issues that have been conjectured to require general intelligence to fix in addition to people. Examples consist of computer system vision, natural language understanding, and dealing with unforeseen situations while solving any real-world problem. [48] Even a specific task like translation requires a machine to read and write in both languages, follow the author's argument (factor), comprehend the context (understanding), and faithfully recreate the author's original intent (social intelligence). All of these issues need to be fixed all at once in order to reach human-level device efficiency.
However, a number of these tasks can now be performed by contemporary big language designs. According to Stanford University's 2024 AI index, AI has reached human-level performance on many criteria for reading understanding and visual thinking. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI scientists were encouraged that synthetic basic intelligence was possible and that it would exist in just a couple of years. [51] AI leader Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might produce by the year 2001. AI leader Marvin Minsky was a consultant [53] on the project of making HAL 9000 as practical as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the problem of producing 'synthetic intelligence' will substantially be resolved". [54]
Several classical AI projects, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it ended up being obvious that researchers had grossly ignored the trouble of the job. Funding firms ended up being hesitant of AGI and put researchers under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "bring on a table talk". [58] In reaction to this and the success of professional systems, both industry and federal government pumped money into the field. [56] [59] However, self-confidence in AI amazingly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever satisfied. [60] For the second time in 20 years, AI researchers who forecasted the impending accomplishment of AGI had been mistaken. By the 1990s, AI scientists had a credibility for making vain guarantees. They ended up being unwilling to make forecasts at all [d] and prevented reference of "human level" artificial intelligence for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained commercial success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable results and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology market, and research study in this vein is heavily moneyed in both academia and industry. As of 2018 [upgrade], development in this field was thought about an emerging trend, and a fully grown phase was expected to be reached in more than ten years. [64]
At the turn of the century, numerous mainstream AI researchers [65] hoped that strong AI might be established by combining programs that solve numerous sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up route to expert system will one day fulfill the conventional top-down route more than half method, prepared to provide the real-world skills and the commonsense understanding that has been so frustratingly elusive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven uniting the two efforts. [65]
However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:
The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is truly just one practical route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never ever be reached by this route (or vice versa) - nor is it clear why we must even attempt to reach such a level, considering that it appears arriving would simply amount to uprooting our symbols from their intrinsic meanings (thus merely decreasing ourselves to the functional equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research
The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to please objectives in a large range of environments". [68] This kind of AGI, identified by the capability to increase a mathematical definition of intelligence rather than display human-like behaviour, [69] was also called universal synthetic intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and including a number of visitor speakers.
As of 2023 [upgrade], a little number of computer researchers are active in AGI research study, and lots of contribute to a series of AGI conferences. However, progressively more researchers have an interest in open-ended knowing, [76] [77] which is the idea of permitting AI to continuously learn and innovate like human beings do.
Feasibility
As of 2023, the advancement and potential achievement of AGI stays a topic of extreme argument within the AI neighborhood. While standard consensus held that AGI was a remote objective, current improvements have led some researchers and market figures to declare that early kinds of AGI may already exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a guy can do". This forecast failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century since it would require "unforeseeable and essentially unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between contemporary computing and human-level synthetic intelligence is as broad as the gulf between existing area flight and useful faster-than-light spaceflight. [80]
A further difficulty is the absence of clarity in defining what intelligence involves. Does it need awareness? Must it display the capability to set goals in addition to pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding required? Does intelligence require clearly replicating the brain and its specific faculties? Does it require emotions? [81]
Most AI scientists believe strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, but that today level of progress is such that a date can not accurately be anticipated. [84] AI professionals' views on the feasibility of AGI wax and wane. Four surveys conducted in 2012 and 2013 recommended that the typical estimate amongst experts for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the experts, 16.5% answered with "never ever" when asked the exact same concern but with a 90% self-confidence instead. [85] [86] Further existing AGI development factors to consider can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong predisposition towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists published a comprehensive assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could fairly be deemed an early (yet still incomplete) version of a synthetic general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of basic intelligence has currently been accomplished with frontier designs. They composed that hesitation to this view comes from four main reasons: a "healthy hesitation about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "dedication to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]
2023 likewise marked the introduction of large multimodal models (big language models capable of processing or creating numerous techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "invest more time believing before they respond". According to Mira Murati, this ability to think before reacting represents a brand-new, extra paradigm. It enhances model outputs by spending more computing power when producing the answer, whereas the model scaling paradigm enhances outputs by increasing the design size, training information and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the business had actually achieved AGI, stating, "In my viewpoint, we have already accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "better than the majority of people at a lot of jobs." He likewise resolved criticisms that big language models (LLMs) simply follow predefined patterns, comparing their knowing process to the scientific technique of observing, hypothesizing, and confirming. These declarations have sparked argument, as they depend on a broad and non-traditional meaning of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs show impressive adaptability, they might not fully satisfy this standard. Notably, Kazemi's comments came shortly after OpenAI eliminated "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the business's strategic intents. [95]
Timescales
Progress in expert system has traditionally gone through periods of rapid progress separated by periods when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to create area for further progress. [82] [98] [99] For instance, the computer system hardware available in the twentieth century was not enough to execute deep learning, which needs big numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that quotes of the time required before a genuinely flexible AGI is constructed differ from ten years to over a century. Since 2007 [upgrade], the consensus in the AGI research study community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI researchers have actually provided a wide variety of opinions on whether development will be this fast. A 2012 meta-analysis of 95 such opinions found a bias towards anticipating that the onset of AGI would occur within 16-26 years for modern and historical predictions alike. That paper has been slammed for how it categorized opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the standard method utilized a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the current deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds approximately to a six-year-old kid in very first grade. A grownup concerns about 100 on average. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of performing numerous varied tasks without particular training. According to Gary Grossman in a VentureBeat post, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to comply with their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 various tasks. [110]
In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, competing that it showed more general intelligence than previous AI designs and demonstrated human-level efficiency in tasks covering multiple domains, such as mathematics, coding, and law. This research study sparked a debate on whether GPT-4 might be considered an early, incomplete variation of artificial general intelligence, highlighting the requirement for more exploration and examination of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton stated that: [112]
The concept that this things could actually get smarter than people - a couple of people thought that, [...] But the majority of people thought it was way off. And I thought it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise stated that "The progress in the last couple of years has been pretty unbelievable", which he sees no reason that it would slow down, expecting AGI within a decade and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would can passing any test at least along with humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI worker, approximated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is thought about the most appealing course to AGI, [116] [117] whole brain emulation can serve as an alternative method. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in information, and after that copying and imitating it on a computer system or another computational gadget. The simulation design should be sufficiently loyal to the original, so that it behaves in almost the exact same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been discussed in synthetic intelligence research [103] as an approach to strong AI. Neuroimaging technologies that might provide the required in-depth understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of enough quality will end up being offered on a similar timescale to the computing power needed to replicate it.
Early approximates
For low-level brain simulation, a really powerful cluster of computers or GPUs would be required, offered the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by adulthood. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on an easy switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different quotes for the hardware needed to equate to the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For comparison, if a "computation" was comparable to one "floating-point operation" - a procedure utilized to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He utilized this figure to forecast the essential hardware would be available at some point between 2015 and 2025, if the rapid development in computer power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed an especially comprehensive and openly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The artificial nerve cell design assumed by Kurzweil and utilized in lots of present artificial neural network executions is simple compared with biological nerve cells. A brain simulation would likely need to record the detailed cellular behaviour of biological nerve cells, presently comprehended just in broad overview. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would require computational powers numerous orders of magnitude bigger than Kurzweil's estimate. In addition, the estimates do not account for glial cells, which are understood to contribute in cognitive processes. [125]
A basic criticism of the simulated brain technique derives from embodied cognition theory which asserts that human embodiment is a vital element of human intelligence and is needed to ground meaning. [126] [127] If this theory is correct, any completely functional brain design will require to include more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, but it is unidentified whether this would be adequate.
Philosophical perspective
"Strong AI" as defined in philosophy
In 1980, theorist John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between two hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: A synthetic intelligence system can (only) act like it thinks and has a mind and awareness.
The first one he called "strong" since it makes a stronger declaration: it presumes something special has actually taken place to the maker that surpasses those abilities that we can test. The behaviour of a "weak AI" maker would be specifically similar to a "strong AI" maker, but the latter would likewise have subjective mindful experience. This usage is also common in scholastic AI research and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to imply "human level synthetic general intelligence". [102] This is not the exact same as Searle's strong AI, unless it is assumed that consciousness is needed for human-level AGI. Academic philosophers such as Searle do not believe that holds true, and to most artificial intelligence scientists the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to know if it really has mind - certainly, there would be no chance to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have different significances, and some elements play substantial functions in sci-fi and the ethics of expert system:
Sentience (or "extraordinary awareness"): The ability to "feel" understandings or feelings subjectively, instead of the capability to reason about perceptions. Some thinkers, such as David Chalmers, utilize the term "consciousness" to refer specifically to incredible consciousness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience arises is called the tough problem of consciousness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be conscious. If we are not conscious, then it does not feel like anything. Nagel uses the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had actually attained sentience, though this claim was widely contested by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a different person, specifically to be consciously familiar with one's own ideas. This is opposed to merely being the "topic of one's thought"-an os or debugger is able to be "familiar with itself" (that is, to represent itself in the same way it represents whatever else)-however this is not what people typically mean when they use the term "self-awareness". [g]
These qualities have an ethical dimension. AI life would generate concerns of well-being and legal security, similarly to animals. [136] Other aspects of consciousness related to cognitive abilities are also appropriate to the principle of AI rights. [137] Figuring out how to integrate sophisticated AI with existing legal and social structures is an emergent problem. [138]
Benefits
AGI might have a wide range of applications. If oriented towards such goals, AGI might help reduce different problems on the planet such as appetite, poverty and health issue. [139]
AGI might enhance productivity and efficiency in a lot of jobs. For instance, in public health, AGI might accelerate medical research, notably against cancer. [140] It might take care of the elderly, [141] and equalize access to rapid, high-quality medical diagnostics. It might use fun, inexpensive and individualized education. [141] The need to work to subsist could end up being outdated if the wealth produced is correctly redistributed. [141] [142] This likewise raises the question of the place of humans in a radically automated society.
AGI could likewise assist to make rational choices, and to expect and avoid catastrophes. It might likewise help to reap the advantages of potentially devastating technologies such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's primary goal is to avoid existential disasters such as human termination (which might be tough if the Vulnerable World Hypothesis turns out to be true), [144] it might take procedures to significantly reduce the dangers [143] while minimizing the effect of these procedures on our lifestyle.
Risks
Existential dangers
AGI might represent multiple types of existential danger, which are risks that threaten "the premature extinction of Earth-originating smart life or the irreversible and drastic damage of its capacity for desirable future development". [145] The danger of human extinction from AGI has actually been the subject of numerous disputes, but there is likewise the possibility that the advancement of AGI would result in a permanently problematic future. Notably, it could be used to spread out and maintain the set of worths of whoever establishes it. If humanity still has ethical blind spots comparable to slavery in the past, AGI might irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI might help with mass surveillance and brainwashing, which might be used to create a steady repressive around the world totalitarian program. [147] [148] There is likewise a threat for the makers themselves. If machines that are sentient or otherwise deserving of moral factor to consider are mass created in the future, taking part in a civilizational path that indefinitely ignores their welfare and interests could be an existential disaster. [149] [150] Considering just how much AGI might improve humanity's future and help in reducing other existential risks, Toby Ord calls these existential dangers "an argument for continuing with due caution", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI poses an existential risk for people, and that this threat requires more attention, is questionable however has actually been backed in 2023 by numerous public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:
So, facing possible futures of incalculable advantages and dangers, the experts are surely doing whatever possible to make sure the very best result, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll show up in a few years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]
The possible fate of humankind has in some cases been compared to the fate of gorillas threatened by human activities. The contrast mentions that greater intelligence enabled humanity to dominate gorillas, which are now susceptible in manner ins which they could not have actually anticipated. As an outcome, the gorilla has actually ended up being a threatened species, not out of malice, however merely as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control mankind which we need to take care not to anthropomorphize them and interpret their intents as we would for human beings. He said that individuals won't be "wise enough to design super-intelligent makers, yet unbelievably dumb to the point of offering it moronic goals with no safeguards". [155] On the other side, the principle of instrumental merging recommends that nearly whatever their goals, smart agents will have reasons to try to endure and get more power as intermediary steps to accomplishing these objectives. Which this does not need having emotions. [156]
Many scholars who are worried about existential danger supporter for more research study into fixing the "control issue" to respond to the question: what kinds of safeguards, algorithms, or architectures can programmers carry out to increase the possibility that their recursively-improving AI would continue to act in a friendly, rather than devastating, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might cause a race to the bottom of security preventative measures in order to launch products before rivals), [159] and the use of AI in weapon systems. [160]
The thesis that AI can posture existential risk also has critics. Skeptics usually state that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other problems connected to current AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of people beyond the technology market, existing chatbots and LLMs are already perceived as though they were AGI, resulting in additional misunderstanding and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an irrational belief in an omnipotent God. [163] Some researchers think that the communication projects on AI existential danger by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulative capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, issued a joint declaration asserting that "Mitigating the threat of termination from AI should be a global top priority together with other societal-scale risks such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. workforce could have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of workers might see at least 50% of their jobs affected". [166] [167] They think about office employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a much better autonomy, capability to make choices, to interface with other computer system tools, but also to manage robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can enjoy a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can wind up miserably bad if the machine-owners successfully lobby against wealth redistribution. So far, the pattern seems to be towards the second alternative, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will require federal governments to adopt a universal standard earnings. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI impact AI security - Research location on making AI safe and advantageous AI alignment - AI conformance to the intended objective A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated device knowing - Process of automating the application of machine learning BRAIN Initiative - Collaborative public-private research study effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of artificial intelligence to play various games Generative artificial intelligence - AI system efficient in producing material in action to prompts Human Brain Project - Scientific research study task Intelligence amplification - Use of details technology to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured machines. Moravec's paradox. Multi-task learning - Solving several maker discovering tasks at the same time. Neural scaling law - Statistical law in artificial intelligence. Outline of artificial intelligence - Overview of and topical guide to expert system. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of expert system. Transfer knowing - Machine learning strategy. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specially designed and enhanced for expert system. Weak expert system - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the short article Chinese space. ^ AI founder John McCarthy writes: "we can not yet identify in general what sort of computational treatments we wish to call intelligent. " [26] (For a conversation of some definitions of intelligence used by synthetic intelligence scientists, see approach of artificial intelligence.). ^ The Lighthill report specifically criticized AI's "grand objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being identified to money just "mission-oriented direct research, instead of basic undirected research study". [56] [57] ^ As AI founder John McCarthy composes "it would be a fantastic relief to the rest of the employees in AI if the developers of new basic formalisms would reveal their hopes in a more safeguarded type than has in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a standard AI book: "The assertion that devices might potentially act intelligently (or, perhaps better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are actually thinking (instead of mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that artificial general intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is creating artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020. ^ a b c "AI timelines: What do experts in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton gives up Google and cautions of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The genuine risk is not AI itself but the way we deploy it. ^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could pose existential threats to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI need to be a global top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of danger of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing devices that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no reason to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the full variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on all of us to ensure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, asteroidsathome.net according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart characteristics is based on the topics covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of difficult tests both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software engineers avoided the term artificial intelligence for worry of being seen as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite development in machine intelligence, synthetic general intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A study of skilled opinion. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI twilight zone between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, but the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a middle ground between narrow and general AI. ^ Quach, Katyanna. "A designer built an AI chatbot using GPT-3 that assisted a guy speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 tasks, from playing games to controlling robots", TechCrunch, archived from the original on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could rival human intelligence in 'simply a few years,' says CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in existing research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable synthetic intelligence for curiosity by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense outweigh benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, strategies (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security risk' to Australia, Senate inquiry says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the implications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The fascinating Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger postured but expert system can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking worries over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states huge tech is lying about AI termination threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market impact potential of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees might see their jobs impacted by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal standard income since 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Perspective, archived from the initial on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer system programs that can solve problems and attain objectives worldwide in addition to humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system basic sufficient to be easy to understand will not be complicated enough to act smartly, while any system complicated enough to act intelligently will be too complicated to comprehend." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead easy silly. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from makers. For biological animals, factor and purpose originate from acting in the world and experiencing the consequences. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who want to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't count on federal governments driven by project financing contributions [from tech companies] to press back.' ... Marcus details the needs that people need to make from their governments and the tech business. They include openness on how AI systems work; payment for people if their data [are] utilized to train LLMs (big language design) s and the right to consent to this use; and the capability to hold tech business accountable for the harms they cause by removing Section 230, imposing cash penalites, and passing more stringent product liability laws ... Marcus likewise suggests ... that a brand-new, AI-specific federal company, comparable to the FDA, the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... develop [ing] an expert licensing routine for engineers that would function in a comparable method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers likewise pledged to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stumped humans for years, exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has exposed that although NLP (natural-language processing) designs are capable of incredible accomplishments, their capabilities are quite limited by the amount of context they get. This [...] might trigger [problems] for scientists who wish to utilize them to do things such as evaluate ancient languages. Sometimes, there are couple of historic records on long-gone civilizations to function as training information for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce fake videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean realistic videos produced using synthetic intelligence that in fact deceive people, then they barely exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited proof. Their role better resembles that of animations, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to prevent humanizing machine-learning models utilized in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of artificial basic intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead cops to overlook contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed not able to reason rationally and tried to count on its vast database of ... realities originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective however undependable. Rules-based systems can not deal with scenarios their programmers did not anticipate. Learning systems are limited by the data on which they were trained. AI failures have actually already led to catastrophe. Advanced autopilot features in cars, although they carry out well in some circumstances, have driven vehicles without warning into trucks, concrete barriers, and parked automobiles. In the wrong circumstance, AI systems go from supersmart to superdumb in an immediate. When an enemy is attempting to manipulate and hack an AI system, equipifieds.com the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations but count on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.