Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of expert system (AI) that matches or surpasses human cognitive capabilities throughout a wide variety of cognitive jobs. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably surpasses human cognitive capabilities. AGI is thought about one of the definitions of strong AI.
Creating AGI is a main goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research and advancement jobs across 37 countries. [4]
The timeline for achieving AGI stays a topic of continuous debate among researchers and experts. As of 2023, some argue that it might be possible in years or years; others maintain it may take a century or longer; a minority believe it might never be accomplished; and another minority claims that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has expressed concerns about the quick development towards AGI, suggesting it could be achieved faster than lots of expect. [7]
There is dispute on the specific meaning of AGI and relating to whether contemporary large language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many specialists on AI have actually specified that reducing the danger of human termination posed by AGI should be a worldwide priority. [14] [15] Others find the advancement of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is likewise referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or general smart action. [21]
Some scholastic sources reserve the term "strong AI" for computer programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one specific issue but lacks general cognitive abilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as humans. [a]
Related concepts include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is a lot more usually intelligent than humans, [23] while the concept of transformative AI associates with AI having a big impact on society, for instance, similar to the farming or commercial transformation. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, qualified, expert, virtuoso, and superhuman. For example, a qualified AGI is defined as an AI that outperforms 50% of knowledgeable adults in a broad variety of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is likewise specified but with a limit of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. One of the leading propositions is the Turing test. However, there are other popular definitions, and some researchers disagree with the more popular techniques. [b]
Intelligence qualities
Researchers typically hold that intelligence is needed to do all of the following: [27]
reason, usage method, solve puzzles, and make judgments under unpredictability represent knowledge, consisting of sound judgment understanding plan learn - interact in natural language - if required, incorporate these skills in conclusion of any given
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) consider extra characteristics such as creativity (the ability to form novel mental images and concepts) [28] and autonomy. [29]
Computer-based systems that show a lot of these capabilities exist (e.g. see computational imagination, automated thinking, choice support group, robotic, evolutionary computation, smart representative). There is debate about whether modern-day AI systems have them to an adequate degree.
Physical traits
Other abilities are thought about desirable in smart systems, as they may affect intelligence or photorum.eclat-mauve.fr help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. relocation and control objects, modification area to check out, wiki.dulovic.tech and so on).
This includes the capability to detect and react to threat. [31]
Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and manipulate items, change place to explore, and so on) can be desirable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) may currently be or end up being AGI. Even from a less positive viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, offered it can process input (language) from the external world in location of human senses. This interpretation aligns with the understanding that AGI has never been proscribed a specific physical personification and therefore does not require a capability for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests indicated to confirm human-level AGI have been thought about, including: [33] [34]
The concept of the test is that the maker needs to attempt and pretend to be a male, by addressing questions put to it, and it will only pass if the pretence is reasonably convincing. A significant part of a jury, who need to not be expert about devices, must be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would require to execute AGI, due to the fact that the solution is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of problems that have been conjectured to need general intelligence to resolve in addition to humans. Examples include computer system vision, natural language understanding, and handling unanticipated circumstances while solving any real-world problem. [48] Even a specific task like translation needs a machine to read and write in both languages, follow the author's argument (reason), understand the context (knowledge), and faithfully reproduce the author's original intent (social intelligence). All of these issues require to be solved all at once in order to reach human-level device performance.
However, numerous of these jobs can now be performed by modern large language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on numerous criteria for reading understanding and visual reasoning. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The first generation of AI scientists were persuaded that artificial basic intelligence was possible and that it would exist in just a couple of years. [51] AI leader Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might develop by the year 2001. AI leader Marvin Minsky was a consultant [53] on the project of making HAL 9000 as realistic as possible according to the agreement predictions of the time. He stated in 1967, "Within a generation ... the issue of producing 'artificial intelligence' will substantially be fixed". [54]
Several classical AI projects, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it ended up being apparent that scientists had grossly ignored the difficulty of the job. Funding firms became doubtful of AGI and put scientists under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a casual conversation". [58] In action to this and the success of expert systems, both market and government pumped cash into the field. [56] [59] However, self-confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never satisfied. [60] For the second time in twenty years, AI researchers who predicted the impending accomplishment of AGI had actually been misinterpreted. By the 1990s, AI researchers had a track record for making vain promises. They ended up being hesitant to make predictions at all [d] and prevented mention of "human level" expert system for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved business success and academic respectability by focusing on particular sub-problems where AI can produce proven results and industrial applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the innovation market, and research study in this vein is heavily moneyed in both academia and market. As of 2018 [upgrade], advancement in this field was thought about an emerging pattern, and a fully grown stage was anticipated to be reached in more than ten years. [64]
At the turn of the century, many traditional AI scientists [65] hoped that strong AI could be established by combining programs that fix numerous sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up route to synthetic intelligence will one day satisfy the conventional top-down route majority way, prepared to provide the real-world skills and the commonsense understanding that has actually been so frustratingly evasive in reasoning programs. Fully intelligent machines will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is truly just one feasible path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this route (or vice versa) - nor is it clear why we should even attempt to reach such a level, given that it appears arriving would simply total up to uprooting our signs from their intrinsic meanings (thereby merely decreasing ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic general intelligence research
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to satisfy objectives in a wide variety of environments". [68] This type of AGI, defined by the capability to maximise a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and including a variety of guest speakers.
Since 2023 [upgrade], a little number of computer system researchers are active in AGI research, and numerous add to a series of AGI conferences. However, significantly more researchers have an interest in open-ended knowing, [76] [77] which is the concept of enabling AI to constantly find out and innovate like humans do.
Feasibility
As of 2023, the development and prospective accomplishment of AGI stays a topic of intense argument within the AI neighborhood. While conventional consensus held that AGI was a distant objective, recent developments have led some researchers and industry figures to claim that early kinds of AGI may currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a guy can do". This prediction failed to come real. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century due to the fact that it would need "unforeseeable and essentially unpredictable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level synthetic intelligence is as wide as the gulf in between current area flight and practical faster-than-light spaceflight. [80]
A further difficulty is the lack of clarity in specifying what intelligence involves. Does it need consciousness? Must it show the ability to set objectives as well as pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as preparation, thinking, and causal understanding required? Does intelligence need explicitly reproducing the brain and its specific faculties? Does it need feelings? [81]
Most AI scientists think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, but that today level of development is such that a date can not properly be anticipated. [84] AI experts' views on the expediency of AGI wax and subside. Four polls conducted in 2012 and 2013 recommended that the mean quote among experts for when they would be 50% positive AGI would show up was 2040 to 2050, depending on the survey, with the mean being 2081. Of the specialists, 16.5% addressed with "never ever" when asked the same concern but with a 90% confidence instead. [85] [86] Further current AGI progress factors to consider can be discovered above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong predisposition towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They evaluated 95 predictions made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists published a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could reasonably be considered as an early (yet still insufficient) variation of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of people on the Torrance tests of imaginative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of basic intelligence has actually currently been attained with frontier models. They wrote that hesitation to this view comes from four main factors: a "healthy skepticism about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "commitment to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 also marked the development of large multimodal designs (big language designs efficient in processing or generating numerous methods such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of designs that "spend more time believing before they respond". According to Mira Murati, this capability to believe before responding represents a brand-new, additional paradigm. It enhances model outputs by spending more computing power when producing the answer, whereas the model scaling paradigm improves outputs by increasing the design size, training information and training compute power. [93] [94]
An OpenAI staff member, Vahid Kazemi, declared in 2024 that the business had actually attained AGI, specifying, "In my opinion, we have already accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than many humans at the majority of tasks." He likewise resolved criticisms that big language designs (LLMs) merely follow predefined patterns, comparing their knowing procedure to the clinical method of observing, assuming, and verifying. These statements have stimulated dispute, as they rely on a broad and unconventional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show impressive versatility, they may not fully meet this standard. Notably, Kazemi's remarks came shortly after OpenAI got rid of "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the company's tactical intentions. [95]
Timescales
Progress in expert system has traditionally gone through durations of fast development separated by periods when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to create space for additional development. [82] [98] [99] For instance, the hardware readily available in the twentieth century was not adequate to carry out deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that price quotes of the time required before a really versatile AGI is developed differ from 10 years to over a century. As of 2007 [upgrade], the agreement in the AGI research neighborhood appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually given a vast array of viewpoints on whether progress will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards forecasting that the start of AGI would occur within 16-26 years for contemporary and historic predictions alike. That paper has actually been criticized for how it categorized opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the standard technique utilized a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the current deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly available and easily available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old kid in very first grade. An adult comes to about 100 on average. Similar tests were performed in 2014, with the IQ score reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of carrying out lots of varied tasks without particular training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to abide by their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of carrying out more than 600 different tasks. [110]
In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, contending that it showed more basic intelligence than previous AI models and demonstrated human-level performance in jobs covering multiple domains, such as mathematics, coding, and law. This research sparked an argument on whether GPT-4 could be considered an early, incomplete variation of synthetic basic intelligence, highlighting the requirement for more expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The idea that this things might really get smarter than individuals - a couple of people thought that, [...] But many people thought it was method off. And I thought it was way off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly said that "The progress in the last couple of years has been quite amazing", and that he sees no factor why it would slow down, expecting AGI within a years or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would can passing any test a minimum of as well as humans. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the advancement of transformer models like in ChatGPT is thought about the most promising path to AGI, [116] [117] whole brain emulation can act as an alternative approach. With entire brain simulation, a brain design is developed by scanning and mapping a biological brain in information, and after that copying and simulating it on a computer system or another computational device. The simulation model need to be adequately loyal to the original, so that it acts in practically the very same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research functions. It has been talked about in expert system research [103] as a technique to strong AI. Neuroimaging innovations that might provide the essential comprehensive understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of sufficient quality will end up being offered on a similar timescale to the computing power needed to emulate it.
Early estimates
For low-level brain simulation, an extremely effective cluster of computer systems or GPUs would be required, offered the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on a basic switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different quotes for the hardware needed to equal the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For comparison, if a "calculation" was comparable to one "floating-point operation" - a procedure used to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was attained in 2022.) He used this figure to forecast the required hardware would be offered sometime between 2015 and 2025, if the rapid development in computer system power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has developed a particularly detailed and openly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic neuron model assumed by Kurzweil and used in numerous current artificial neural network applications is basic compared to biological neurons. A brain simulation would likely need to record the comprehensive cellular behaviour of biological neurons, presently comprehended only in broad outline. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would need computational powers several orders of magnitude larger than Kurzweil's quote. In addition, the price quotes do not account for glial cells, which are understood to contribute in cognitive processes. [125]
A fundamental criticism of the simulated brain approach stems from embodied cognition theory which asserts that human personification is a necessary element of human intelligence and is essential to ground significance. [126] [127] If this theory is appropriate, any fully functional brain design will require to incorporate more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as a choice, however it is unidentified whether this would be adequate.
Philosophical viewpoint
"Strong AI" as defined in philosophy
In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction in between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An artificial intelligence system can (only) act like it thinks and has a mind and consciousness.
The very first one he called "strong" because it makes a stronger statement: it assumes something unique has taken place to the machine that surpasses those abilities that we can test. The behaviour of a "weak AI" machine would be exactly similar to a "strong AI" maker, but the latter would likewise have subjective mindful experience. This usage is also common in academic AI research study and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that consciousness is required for human-level AGI. Academic thinkers such as Searle do not think that is the case, and to most synthetic intelligence researchers the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it really has mind - indeed, there would be no chance to tell. For AI research study, Searle's "weak AI hypothesis" is comparable to the statement "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have numerous meanings, and some aspects play substantial roles in sci-fi and the principles of synthetic intelligence:
Sentience (or "extraordinary awareness"): The ability to "feel" perceptions or feelings subjectively, instead of the ability to factor about understandings. Some thinkers, such as David Chalmers, utilize the term "awareness" to refer solely to sensational awareness, which is roughly comparable to life. [132] Determining why and how subjective experience develops is referred to as the tough problem of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be mindful. If we are not mindful, then it does not feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had actually attained sentience, though this claim was commonly disputed by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, especially to be purposely mindful of one's own thoughts. This is opposed to merely being the "subject of one's thought"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the exact same way it represents whatever else)-however this is not what individuals normally mean when they utilize the term "self-awareness". [g]
These characteristics have an ethical measurement. AI life would trigger issues of welfare and legal security, similarly to animals. [136] Other elements of consciousness related to cognitive abilities are also relevant to the idea of AI rights. [137] Finding out how to integrate advanced AI with existing legal and social frameworks is an emergent concern. [138]
Benefits
AGI might have a wide range of applications. If oriented towards such goals, AGI could assist mitigate different problems in the world such as appetite, hardship and health issues. [139]
AGI might enhance productivity and effectiveness in many jobs. For instance, in public health, AGI could speed up medical research study, especially versus cancer. [140] It could look after the senior, [141] and equalize access to quick, top quality medical diagnostics. It could offer enjoyable, cheap and personalized education. [141] The requirement to work to subsist might end up being obsolete if the wealth produced is properly redistributed. [141] [142] This also raises the question of the place of people in a significantly automated society.
AGI could also assist to make logical choices, and to prepare for and avoid catastrophes. It could likewise help to profit of potentially devastating innovations such as nanotechnology or climate engineering, while avoiding the associated threats. [143] If an AGI's primary goal is to prevent existential catastrophes such as human extinction (which could be hard if the Vulnerable World Hypothesis turns out to be true), [144] it might take measures to drastically lower the dangers [143] while reducing the effect of these measures on our quality of life.
Risks
Existential threats
AGI might represent numerous types of existential risk, which are risks that threaten "the premature extinction of Earth-originating smart life or the irreversible and drastic destruction of its capacity for preferable future advancement". [145] The danger of human termination from AGI has actually been the subject of lots of arguments, but there is also the possibility that the development of AGI would cause a completely problematic future. Notably, it might be utilized to spread out and maintain the set of worths of whoever develops it. If humankind still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, preventing moral progress. [146] Furthermore, AGI could help with mass monitoring and brainwashing, which could be used to develop a stable repressive worldwide totalitarian program. [147] [148] There is also a risk for the makers themselves. If machines that are sentient or otherwise deserving of ethical factor to consider are mass produced in the future, participating in a civilizational course that forever ignores their well-being and interests might be an existential disaster. [149] [150] Considering how much AGI could enhance humankind's future and help in reducing other existential threats, Toby Ord calls these existential risks "an argument for proceeding with due caution", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI presents an existential danger for people, which this danger needs more attention, is questionable but has actually been backed in 2023 by lots of public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:
So, dealing with possible futures of enormous benefits and threats, the specialists are undoubtedly doing everything possible to make sure the finest outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll show up in a couple of decades,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The prospective fate of humankind has in some cases been compared to the fate of gorillas threatened by human activities. The contrast specifies that higher intelligence permitted humanity to control gorillas, which are now vulnerable in methods that they might not have actually expected. As an outcome, the gorilla has actually ended up being an endangered species, not out of malice, however just as a security damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humankind which we must beware not to anthropomorphize them and analyze their intents as we would for people. He said that individuals will not be "smart sufficient to create super-intelligent devices, yet unbelievably dumb to the point of providing it moronic goals with no safeguards". [155] On the other side, the idea of crucial merging suggests that almost whatever their goals, intelligent representatives will have reasons to try to survive and get more power as intermediary steps to attaining these objectives. And that this does not require having feelings. [156]
Many scholars who are worried about existential danger supporter for more research study into solving the "control issue" to address the concern: what types of safeguards, algorithms, or architectures can programmers implement to increase the probability that their recursively-improving AI would continue to behave in a friendly, rather than harmful, manner after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which might lead to a race to the bottom of security precautions in order to launch products before competitors), [159] and the use of AI in weapon systems. [160]
The thesis that AI can pose existential risk likewise has detractors. Skeptics generally state that AGI is unlikely in the short-term, or that issues about AGI distract from other problems associated with existing AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for lots of people outside of the technology industry, existing chatbots and LLMs are currently perceived as though they were AGI, leading to additional misconception and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an unreasonable belief in an omnipotent God. [163] Some researchers believe that the communication campaigns on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and researchers, released a joint statement asserting that "Mitigating the danger of termination from AI ought to be a global top priority along with other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. workforce could have at least 10% of their work tasks impacted by the intro of LLMs, while around 19% of employees might see a minimum of 50% of their jobs affected". [166] [167] They think about office employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make choices, to user interface with other computer tools, but also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend upon how the wealth will be rearranged: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can wind up badly poor if the machine-owners effectively lobby against wealth redistribution. So far, the trend seems to be towards the 2nd alternative, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to embrace a universal basic income. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI impact AI security - Research location on making AI safe and helpful AI alignment - AI conformance to the designated goal A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of machine knowing BRAIN Initiative - Collaborative public-private research effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of expert system to play different video games Generative artificial intelligence - AI system efficient in creating material in action to triggers Human Brain Project - Scientific research task Intelligence amplification - Use of info technology to augment human intelligence (IA). Machine principles - Moral behaviours of manufactured makers. Moravec's paradox. Multi-task learning - Solving multiple device finding out tasks at the very same time. Neural scaling law - Statistical law in maker knowing. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or type of artificial intelligence. Transfer learning - Machine learning strategy. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specifically developed and enhanced for synthetic intelligence. Weak synthetic intelligence - Form of synthetic intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the article Chinese space. ^ AI creator John McCarthy writes: "we can not yet define in general what sort of computational procedures we desire to call smart. " [26] (For a discussion of some definitions of intelligence utilized by artificial intelligence researchers, see viewpoint of expert system.). ^ The Lighthill report specifically slammed AI's "grand goals" and led the dismantling of AI research in England. [55] In the U.S., DARPA ended up being figured out to fund only "mission-oriented direct research, rather than standard undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be an excellent relief to the remainder of the workers in AI if the creators of brand-new basic formalisms would reveal their hopes in a more protected kind than has in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a basic AI textbook: "The assertion that devices could perhaps act smartly (or, perhaps better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are really thinking (rather than imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic general intelligence benefits all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is creating artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were identified as being active in 2020. ^ a b c "AI timelines: What do specialists in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton quits Google and alerts of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The genuine hazard is not AI itself but the way we release it. ^ "Impressed by synthetic intelligence? Experts state AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential risks to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that humanity needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the danger of termination from AI should be a global top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of danger of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating makers that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no reason to fear AI as an existential risk. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the full variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on everybody to make certain that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent characteristics is based on the subjects covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of tough exams both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software engineers avoided the term synthetic intelligence for worry of being seen as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite progress in device intelligence, synthetic general intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A survey of skilled viewpoint. In Fundamental problems of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI golden zone in between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, but the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a middle ground in between narrow and general AI. ^ Quach, Katyanna. "A designer developed an AI chatbot using GPT-3 that assisted a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 jobs, from playing video games to managing robots", TechCrunch, archived from the original on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could measure up to human intelligence in 'just a couple of years,' says CEO of Google's main A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: genbecle.com A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A broad variety of views in current research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer system may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable synthetic intelligence for interest by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, methods (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate query states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard positioned but expert system can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says huge tech is lying about AI termination risk". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market effect potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees might see their jobs affected by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal standard earnings due to the fact that 'in the future, physical work will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer programs that can resolve problems and accomplish objectives in the world as well as people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, obtained 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system basic adequate to be understandable will not be made complex enough to behave intelligently, while any system complicated enough to behave wisely will be too complicated to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple dumb. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological creatures, factor and function originate from acting on the planet and experiencing the consequences. Artificial intelligences - disembodied, strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who wish to get abundant from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't depend on federal governments driven by campaign finance contributions [from tech business] to push back.' ... Marcus details the needs that residents must make from their governments and the tech business. They consist of transparency on how AI systems work; payment for individuals if their information [are] utilized to train LLMs (big language design) s and the right to permission to this use; and the capability to hold tech business accountable for the harms they cause by removing Section 230, enforcing money penalites, and passing stricter item liability laws ... Marcus also suggests ... that a brand-new, AI-specific federal company, comparable to the FDA, the FCC, or the FTC, may provide the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... suggests ... establish [ing] an expert licensing program for engineers that would operate in a similar method to medical licenses, malpractice suits, and the Hippocratic oath in medication. 'What if, like physicians,' she asks ..., 'AI engineers likewise vowed to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has puzzled human beings for decades, reveals the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has exposed that although NLP (natural-language processing) models can amazing tasks, their capabilities are extremely much restricted by the amount of context they get. This [...] could cause [difficulties] for researchers who want to use them to do things such as examine ancient languages. In some cases, there are few historic records on long-gone civilizations to work as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to generate phony videos equivalent from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply realistic videos produced using expert system that in fact trick people, then they barely exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, suvenir51.ru running in our media as counterfeited evidence. Their function better looks like that of cartoons, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must prevent humanizing machine-learning designs utilized in scientific research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic basic intelligence are stymmied by the very same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to overlook contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test however showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed not able to reason realistically and attempted to count on its large database of ... facts stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective but unreliable. Rules-based systems can not deal with circumstances their developers did not anticipate. Learning systems are restricted by the data on which they were trained. AI failures have already resulted in disaster. Advanced autopilot features in automobiles, although they carry out well in some circumstances, have actually driven vehicles without alerting into trucks, concrete barriers, and parked cars and trucks. In the incorrect circumstance, AI systems go from supersmart to superdumb in an instant. When an opponent is attempting to manipulate and hack an AI system, the dangers are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by new innovations however rely on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.